A Statistical Method for Estimating Luminosity Functions using Truncated Data

نویسنده

  • Chad M. Schafer
چکیده

The observational limitations of astronomical surveys lead to significant statistical inference challenges. One such challenge is the estimation of luminosity functions given redshift (z) and absolute magnitude (M) measurements from an irregularly truncated sample of objects. This is a bivariate density estimation problem; we develop here a statistically rigorous method which (1) does not assume a strict parametric form for the bivariate density; (2) does not assume independence between redshift and absolute magnitude (and hence allows evolution of the luminosity function with redshift); (3) does not require dividing the data into arbitrary bins; and (4) naturally incorporates a varying selection function. We accomplish this by decomposing the bivariate density φ(z, M) via log φ(z, M) = f(z) + g(M) + h(z, M, θ) where f and g are estimated nonparametrically, and h takes an assumed parametric form. There is a simple way of estimating the integrated mean squared error of the estimator; smoothing parameters are selected to minimize this quantity. Results are presented from the analysis of a sample of quasars. Subject headings: truncation bias, luminosity function, statistical procedures, quasars

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Flexible Method of Estimating Luminosity Functions

We describe a Bayesian approach to estimating luminosity functions. We derive the likelihood function and posterior probability distribution for the luminosity function, given the observed data, and we compare the Bayesian approach with maximum-likelihood by simulating sources from a Schechter function. For our simulations confidence intervals derived from bootstrapping the maximum-likelihood e...

متن کامل

Recurrence Relations for Moment Generating Functions of Generalized Order Statistics Based on Doubly Truncated Class of Distributions

In this paper, we derived recurrence relations for joint moment generating functions of nonadjacent generalized order statistics (GOS) of random samples drawn from doubly truncated class of continuous distributions. Recurrence relations for joint moments of nonadjacent GOS (ordinary order statistics (OOS) and k-upper records (k-RVs) as special cases) are obtained. Single and product moment gene...

متن کامل

A Method to Expand Family of Continuous Distributions based on Truncated Distributions

 Abstract: A new method to generate various family of distributions is introduced. This method introduces a new two-parameter extension of the exponential distribution to illustrate its application. Some statistical and reliability properties of the new distribution, including explicit expressions for the moments, quantiles, mode, moment generating function, mean residual lifetime, stochas...

متن کامل

Evaluation of estimation methods for parameters of the probability functions in tree diameter distribution modeling

One of the most commonly used statistical models for characterizing the variations of tree diameter at breast height is Weibull distribution. The usual approach for estimating parameters of a statistical model is the maximum likelihood estimation (likelihood method). Usually, this works based on iterative algorithms such as Newton-Raphson. However, the efficiency of the likelihood method is not...

متن کامل

Large-scale Inversion of Magnetic Data Using Golub-Kahan Bidiagonalization with Truncated Generalized Cross Validation for Regularization Parameter Estimation

In this paper a fast method for large-scale sparse inversion of magnetic data is considered. The L1-norm stabilizer is used to generate models with sharp and distinct interfaces. To deal with the non-linearity introduced by the L1-norm, a model-space iteratively reweighted least squares algorithm is used. The original model matrix is factorized using the Golub-Kahan bidiagonalization that proje...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007